skip to main content


Search for: All records

Creators/Authors contains: "Götz, Andreas W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The reactive uptake of N 2 O 5 to aqueous aerosol is a major loss channel for nitrogen oxides in the troposphere. Despite its importance, a quantitative picture of the uptake mechanism is missing. Here we use molecular dynamics simulations with a data-driven many-body model of coupled-cluster accuracy to quantify thermodynamics and kinetics of solvation and adsorption of N 2 O 5 in water. The free energy profile highlights that N 2 O 5 is selectively adsorbed to the liquid–vapor interface and weakly solvated. Accommodation into bulk water occurs slowly, competing with evaporation upon adsorption from gas phase. Leveraging the quantitative accuracy of the model, we parameterize and solve a reaction–diffusion equation to determine hydrolysis rates consistent with experimental observations. We find a short reaction–diffusion length, indicating that the uptake is dominated by interfacial features. The parameters deduced here, including solubility, accommodation coefficient, and hydrolysis rate, afford a foundation for which to consider the reactive loss of N 2 O 5 in more complex solutions. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Dinitrogen pentoxide (N2O5) is an important intermediate in the atmospheric chemistry of nitrogen oxides. Although there has been much research, the processes that govern the physical interactions between N2O5 and water are still not fully understood at a molecular level. Gaining a quantitative insight from computer simulations requires going beyond the accuracy of classical force fields while accessing length scales and time scales that are out of reach for high-level quantum-chemical approaches. To this end, we present the development of MB-nrg many-body potential energy functions for nonreactive simulations of N2O5 in water. This MB-nrg model is based on electronic structure calculations at the coupled cluster level of theory and is compatible with the successful MB-pol model for water. It provides a physically correct description of long-range many-body interactions in combination with an explicit representation of up to three-body short-range interactions in terms of multidimensional permutationally invariant polynomials. In order to further investigate the importance of the underlying interactions in the model, a TTM-nrg model was also devised. TTM-nrg is a more simplistic representation that contains only two-body short-range interactions represented through Born–Mayer functions. In this work, an active learning approach was employed to efficiently build representative training sets of monomer, dimer, and trimer structures, and benchmarks are presented to determine the accuracy of our new models in comparison to a range of density functional theory methods. By assessing the binding curves, distortion energies of N2O5, and interaction energies in clusters of N2O5 and water, we evaluate the importance of two-body and three-body short-range potentials. The results demonstrate that our MB-nrg model has high accuracy with respect to the coupled cluster reference, outperforms current density functional theory models, and thus enables highly accurate simulations of N2O5 in aqueous environments. 
    more » « less
  4. null (Ed.)
  5. Abstract

    Mössbauer isomer shift and quadrupole splitting properties have been calculated using the OLYP‐D3(BJ) density functional method on previously obtained (W.‐G. Han Du, et al.,Inorg Chem.2020,59, 8906–8915) geometry optimized Fea33+−H2O−CuB2+dinuclear center (DNC) clusters of the resting oxidized (Ostate) “as‐isolated” cytochromecoxidase (CcO). The calculated results are highly consistent with the available experimental observations. The calculations have also shown that the structural heterogeneities of theOstate DNCs implicated by the Mössbauer experiments are likely consequences of various factors, particularly the variable positions of the central H2O molecule between the Fea33+and CuB2+sites in different DNCs, whether or not this central H2O molecule has H‐bonding interaction with another H2O molecule, the different spin states having similar energies for the Fea33+sites, and whether the Fea33+and CuB2+sites are ferromagnetically or antiferromagnetically spin‐coupled.

     
    more » « less